Bolted joints are best made after hot dip galvanizing.

Use of preformed members with the correct mini-

In contrast to a paint coating, burrs will be overcoated by hot dip galvanizing but the removal of a burr after

Heat above the melting temperature of zinc as this can cause embrittlement due to intergran-

Corrosion prevention is an essential factor in the economic utilisation of steel. Provision of the appropriate protective coating can bring initial savings plus substantial economies in service, due to reduction or elimination of maintenance and lost service time, and by deferring the replacement date of structures and equipment.

When working with steel, bolts, nuts and clips need to be parallel or equal to the surrounding coating thickness, if a duplex coating is to be applied. The repaired

For complete protection, molten zinc must be able to flow freely to all parts of the surfaces of a fab-

This will minimise differences in the coating.

This is a critical step in bend design and the radius of the bend should be sufficient to prevent cracking of the zinc coating. If full radius bending cannot be easily achieved, then mechanical damage has occurred.

Check that assemblies comprising castings and steels of widely differing surface conditions have been abrasive blast cleaned.

Despite the higher cost, hot dip galvanizing is the traditional method that leads to the best results. Its advantages are:

Always obtain the advice of the galvanizer if the above-mentioned guidelines are not applicable.

Do not apply any water-based primers, adhesives or any other coatings that could be affected by water quenching.

The mechanical strength of hot dip galvanized steel is determined by steel analysis, immersion time and

Table 2

<table>
<thead>
<tr>
<th>STEEL GRADE</th>
<th>TUBE DIAMETER</th>
<th>MIN. COATING THICKNESS</th>
<th>MAX. COATING THICKNESS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

RELIABILITY

The hot-dip galvanized coating is formed by a metallurgical reaction between molten zinc and iron. This results in the formation of a uniform layer of zinc which is chemically bonded to the steel. The hot-dip galvanized coating is a uniform layer of zinc that is chemically bonded to the steel. The thickness of the coating is determined by the amount of zinc that is forced through the molten zinc bath. The thickness of the coating can be increased by increasing the immersion time in the bath. The coating is designed to provide protection for the steel against corrosion.

The reliability of hot-dip galvanized coatings is determined by the degree of corrosion on the steel and the thickness of the coating. The thickness of the coating is determined by the amount of zinc that is forced through the molten zinc bath. The coating is designed to provide protection for the steel against corrosion.

DEPENDABILITY

The thickness of the coating is determined by the amount of zinc that is forced through the molten zinc bath. The coating is designed to provide protection for the steel against corrosion.

The durability of hot dip galvanized coatings is determined by the degree of corrosion on the steel and the thickness of the coating. The thickness of the coating is determined by the amount of zinc that is forced through the molten zinc bath. The coating is designed to provide protection for the steel against corrosion.